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This paper is concerned with two important aspects of nonlinear internal gravity 
waves in a stably stratified inviscid plane shear flow, their shape and their breaking, 
particularly in conditions which are frequently encountered in geophysical applica- 
tions when the vertical gradients of the horizontal current and the density are 
concentrated in a fairly narrow depth interval (e.g. the thermocline in the ocean). 
The present theoretical and experimental study of the wave shape extends earlier 
work on waves in the absence of shear and shows that the shape may be significantly 
altered by shear, the second-harmonic terms which describe the wave profile changing 
sign when the shear is increased sufficiently in an appropriate sense. 

I n  the second part of the paper we show that the slope of internal waves a t  which 
breaking occurs (the particle speeds exceeding the phase speed of the waves) may be 
considerably reduced by the presence of shear. Internal waves on a thermocline which 
encounter an increasing shear, perhaps because of wind action accelerating the upper 
mixing layer of the ocean, may be prone to such breaking. 

This work may alternatively be regarded as a study of the stability of a parallel 
stratified shear flow in the presence of a particular finite disturbance which corresponds 
to internal gravity waves propagating horizontally in the plane of the flow. 

1. Introduction 
The seasonal thermocline in the ocean and its cousin, the inversion which caps the 

atmospheric boundary layer, are regions of large vertical density gradient where the 
horizontal speed of the respective fluid often changes rapidly with depth or height. 
The change in speed across these regions is indeed often comparable with the speed 
at  which internal gravity waves propagate through a still environment, and the shear 
may therefore be expected to produce significant effects on the phase speed of the 
waves, and perhaps also on their shape and on the conditions in which they break. 

Few studies have been made of the effects of finite amplitude on internal waves. 
Benjamin (1966, who also gives comprehensive reference to other studies) found that 
nonlinear effects are important in those regions, like the thermocline, where the 
vertical density gradient is large. The present work was first stimulated by the 
observation that steady progressive interfacial waves in a two-layer fluid have exactly 
the same shape as have surface waves on a fluid of depth equal to the lower layer, 
provided they move at the speed of the upper layer (Thorpe 1974, appendix C). It is 
obviously necessary for the condition to be satisfied that the two layers are not 
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moving with the same speed). This result is in contrast to an earlier result that the 
shape of interfacial waves in a two-layer fluid with no shear is determined by the ratio 
of the depths and densities (Thorpe 1968a, hereafter called I). The waves then have 
narrow troughs and wide crests, the opposite of surface waves, if the density difference 
is small and the upper-layer depth much smaller than that of the lower layer. 

The presence of shear in a two-layer fluid may thus change the wave shape, and a 
theory summarizing these changes is reviewed in appendix A. The two-layer fluid, 
whilst giving insight into the nature of the problem, is subject to the conceptual 
difficulty that, in the absence of surface tension a t  the interface and viscosity in the 
fluids, any shear flow is unstable, in the sense that there exist infinitesimal waves 
which grow exponentiallyi (Chandrasekhar 1961, chap. 11) .  This objection is avoided 
here by focusing attention on fluids in which the density and velocity vary continuously 
and have continuous derivatives, and which are thus closer to the fluids encountered 
in geophysical applications. 

Banks, Drazin & Zaturska (1976) have given an account of small amplitude internal 
waves in shear flows, classifying the waves according to their stability properties. We 
shall here be concerned with the discrete class of modified internal gravity waves 
which (at least at small amplitude) are non-singular stable modes in a fluid with 
density increasing everywhere with depth. These waves have phase speeds c which 
lie outside the range of speeds of the mean flow (that is c > max U(x)  or c < min U ( z ) ,  
where U ( z )  is the mean flow speed and z is the upward vertical co-ordinate). The flows 
considered are two-dimensional with waves moving in the +x direction at  speeds 
which henceforth, without loss of generality, are supposed to exceed max U ( z ) .  In  the 
limit of zero shear (or infinite Richardson number) the classical internal gravity 
waves are recovered. We shall not be concerned with the unstable wave modes which 
are associated with flows having small Richardson numbers and which coexist with the 
internal gravity waves in some parameter range but, recognizing that their presence 
implies that the flow is unstable, we shall draw some conclusions about the alternative 
mechanisms for instability when we come to discuss the stability of the waves and the 
experimental observations in $5 5 and 6. 

Orlanski & Bryan (1 969) have shown that a change in the form of the waves, or 
breaking, occurs in internal waves (or in any wave system) when the forward speed of 
particles somewhere in the flow exceeds the phase speed of the waves. The physical 
transition accompanying such breaking in a stably stratified fluid leads inevitably to a 
region in which the density decreases with depth and in which, provided diffusion is 
negligible and the region can be maintained for a sufficient time, Rayleigh-Taylor 
instability and irreversible mixing processes may be expected. The subsequent physical 
flow may however again be stable, although it may contain ‘rotors’, regions of closed 
streamlines moving at the phase speed of the waves. Banks et al. (1976) showed that, 
as the flow Richardson number falls towards zero, the phase speed of small waves 
tends to the maximum speed of the mean flow. Thus for sufficiently small Richardson 
numbers, the wave motion need produce only a small increase to the forward speed 

-f This instability is correctly referred to as the Kelvin-Helmholtz instability, for these two 
scientists were concerned with the stability of sharp fluid interfaces. Recent practice however 
has been to use the name Kelvin-Helmholtz instability to describe the growth of small disturb- 
ances in any steady stably stratified shear flow, and we shall reluctantly continue this practice 
here. 
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of the flow to reach a condition of breaking a t  some level in the fluid. This suggested 
that a study of small, but finite, internal waves in shear might provide useful pre- 
dictions of the onset of wave breaking. This theoretical work, and the associated 
experiments, may be regarded either as a study of finite amplitude waves and their 
stability in shear flow, or alternatively as a study of the stability of the flow itself to 
finite disturbances of a certain kind, namely those which resemble a uniform train of 
free waves. It should be remembered that the breaking instability is confined to a region 
which may be small in comparison with the waves and that, unlike Kelvin-Helmholtz 
instability, for example, the waves themselves do not grow in amplitude as the result 
of the instability, a feature which nicely distinguishes in a physical way the different 
types of instability. We shall h d  that for a given shear in a fluid of specified density 
profile (or for a given flow Richardson number in a specified flow) there is a minimum 
(or critical) wave slope above which waves of a given wavelength are unstable. This 
work also contrasts with the study of the stability of the wave train itself by a 
Benjamin-Feir-type mechanism (Borisenko et al. 1976; Grimshaw 1976; Thorpe 1977). 

Our first concern is with the wave shape. The analysis is described in 5 2.1. I n  the 
absence of analytical solutions, numerical polutions have been obtained for waves in 
fluids with density and velocity having hyperbolic-tangent forms ( 5  3) and the results 
are compared with laboratory experiments (8 4). Some results on the group velocity 
and the effect of finite amplitude on the phase speed are given in $5  2.2 and 2.3 and 
the latter proves useful when we consider the breaking of the waves in $ 5  5 (theory) 
and 6 (experiments). The theory is developed in conventional successive approxi- 
mation form, following I, as far as third order, and although no formal convergence 
is established and the points of close comparison are few, the theoretical and experi- 
mental results are in general agreement. 

Some remarks about the application of the results to  natural flows are made in the 
concluding section, 5 7. 

2. Theory 
2.1.  The wave shape 

We consider a stably stratified inviscid fluid of density po(x) bounded between hori- 
zontal planes z = 0 and z = h, with z increasing upwards. We make the Boussinesq 
approximationt and suppose that the motion is two-dimensional, so that we may 
define a stream function $(x, z, t )  such that the velocity u = (a$/&, 0 ,  - a$/ax) .  The 
motion is governed by the vorticity equation 

PO(0) [a(v2$)/at + J(V2@,  741 = gap/ax, (1) 

(2) 

where J is the Jacobian with respect to x and z, and p is the density of the fluid. The 
continuity equation is 

@/at+ J ( p ,  $) = 0. 

We suppose that a t  time t = 0 a progressive internal wave of wavenumber k is 
established in the horizontally infinite layer without, by horizontal inflow, changing 
the density structure, and that the mean Eulerian velocity of the fluid is U(z). We 

t This approximation may not always be valid for long waves. See, for example, Benjamin 
(1906).  
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look for a solution at  subsequent times in the form 
m m 

where E = exp [ i (kx -  d)], #-n = Jn, p.+ = pn (a tilde denotes the complex conjugate) 
and u is the wave frequency (yet to be determined). We also write 

where #nj and pnj  are functions of z, g and 7 only and E is an expansion parameter. 
Here 

are slowly varying scales, and cg is the horizontal group velocity of the waves (which 
is also to be determined; the expansion technique follows that of Davey & Stewartson 
(1974), being common to a number of multiple-scale approaches). We suppose that 

g = E(Z - cg t ) ,  7 = s2t ( 5 )  

Po0 = P O ( 4 ,  $oo,* = w. (6) 

The expressions for $ and p are now substituted into (1)  and (2) and the method of 
multiple scales used to obtain a series of differential equations for the $nj and pnj .  
These are solved by successively equating the coefficients of dEn to zero and using 
(2) to remove the p n j  from (1)  to obtain ordinary differential equations for the #nj 

in terms of known p's and 9's with smaller suffix values. These equations are solved 
for #nj and the equation derived from (2) used to find pnj. The equation of a constant- 
density surface z + ~ ( x ,  z, t ,  g, 7 )  may be found by expressing 7 as a double series in c and 
E similar to (3) and (a ) ,  expanding p(x, z + 7, t ,  E, 7 )  -po(z)  = 0 as a Taylor series and 
comparing coefficients to find the qnj.  We impose the condition that the mean displace- 
ment shall be zero so that the disturbed fluid has the same mean density distribution 
as the undisturbed fluid. This condition has been described in detail elsewhere (I; 
Yih 1974) and is equivalent to the condition that the mean fluid depth is unchanged 
in the study of finite amplitude surface waves. The phase speed of the infinitesimal 
waves is determined by comparing coefficients of EE, the group velocity by comparing 
coefficients of s2E and the effect of finite amplitude on the phase speed by comparing 
coefficients of s3E. 

On comparing coefficients of EE we find 

#I1  = AWz), Pl l  = Pi A T / (  u - 4, 7 1 1  = - A Y / (  lY - c ) ,  (7 1 
where A = A(<,  7) is an undetermined function of the slowly varying scales, and 

with Y(0) = Y ( h )  = 0. This is the Taylor-Goldstein equation (Thorpe 1969) familiar 
in instability problems; c is the phase speed of the waves and N is the Brunt-Viiisala 
frequency. N2 is nowhere negative since the fluid is stably stratified, and N is therefore 
real. We assume that, given k, there are solutions of (8) which satisfy the boundary 
conditions with a set of real eigenvalues of c which lie outside the range of V, so that 
U - c  is everywhere non-zero (Banks et aE. 1976). These represent internal gravity 
wave modes and of these we select one eigensolution Y ( z )  and the corresponding 
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phase speed c.  At order GE2 we find terms which contribute to the wave shape. The 
stream function is given by $22 = A2Y,(z), where? 

whilst 

and 

For a uniform train of waves the wave 'shape' is given locally, to order s2, by 

q = sqll E + c2q22 E2 + complex conjugate 

YY' YP, + y2u' ) cos2(kx - d + 6 )  +- = w y c o s  c - u  (kx - at + 6) + 2(sl A I )2 (m2 c -  u 2 ( c -  U)3 

= E ~ ~ ( Z ) C O S  ( k x - d + + ) + ~ 2 q 2 ( z ) C ~ ~ 2 ( k x - d + 6 ) ,  (12 )  

say, where 6 = arg A (other terms in e and e2 are zero, as we show below). For those 
values of z for which q, is positive the isopycnal surfaces have a wave form with rela- 
tiveIy narrow crests and wide troughs, whilst if q, is negative the reverse is true. 
This result reduces to that found in I when U' = 0. 

2.2. The group velocity 
Comparing coefficients of order CEO, dol and pol are found to be zero when the con- 
ditions on the mean flow and mean displacement are applied. Hence 

$01 = 0, pol = 0, To1 = 0. (13) 

At order s2E1 the effects of an x variation in A first become significant. The equation 

The operator 9 ( k ,  c )  is self-adjoint and the left-hand side of the equation is identical 
to that of (8), and so following Stuart (1960),  solutions of (14 )  exist, subject to the 
boundary conditions d12 = 0 at z = 0, h, if and only if the following orthogonality 

[ 2 N 2 - U " ( U - ~ ) ] - 2 k 2  
condition holds : 

This may be reorganized to give 

When U = 0 this gives the more familiar equation for the group velocity of waves in 
the absence of shear (Thorpe 1977). Since 

t Note that, in contrast to I (equation 3.2.19), there is now no complete orthogonal set of 
eigenfunctioas which can be used to express the left-hand side of (9). 
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it  follows from (1  6) that 

Yp2 
[2N2 + U"(c - U ) ]  dz, 

ac 
aa 

a result found by perturbation techniques by Howard (1963, equation 13) in his study 
of unstable waves near stability boundaries, and recently by Voronovich (1976) in 
rather more general conditions than those considered here. Since c lies outside the 
range of U, c -  U is positive and so, if U" > 0 everywhere, it  follows that cg < c .  The 
group velocity cg may however lie within the range of U ,  and an example with this 
property is discussed in 5 3. 

2.3. Finite amplitude effects on phase speed 

Having considered in the last subsection linear waves subjected to a modulation 
which moves at  the group velocity, we now turn to the effect of finite amplitude on 
the phase' speed of a train of waves which is uniform in the x direction, in which there 
is no f variation. 

A solution of (14) is now q512 = 0 and it follows that 

Pl2 = 0, 712 = 0. (18) 

Comparing coefficients a t  order E~EO yields go, = 0, and the condition of zero displace- 
ment gives qo2 = 0, from which it follows that 

The correction to the phase speed is found at  order e3E, where the governing 

[2N2+ U"(C-  o ) ] + ~ ( z ) l A ( ~ A ,  (19) 
2iA,Y equation is 

3(k, ' )  $13 = k(c - u)3 

where ~ ( z )  is a determined function of z. 

orthogonality condition holds: 
As before, a solution satisfying the boundary conditions can be found only if an 

A , l h  y2 [2N2+ U f r ( c -  V ) ]dz  = -iAIAI2 
0 k(c - U)3 

This is an equation for A which has the solution 

A = aexp ( -iu2a27), (21) 

where g2 is given in appendix B and a = IA I is real. Substitution in (12) gives a wave 
with phase kx  - (u + e2a2u2) t ,  which thus advances with speed (g + ~ ~ a ~ a , ) / k .  The 
effect of finite amplitude is thus to increase the phase speed by a fraction 

E 2 C 2 / C  = s21A12u2/(T. 

Because of the occurrence of high-order derivatives in the expression for u2, it 
seems unlikely that any general conclusions about the sign of c2 can easily be deduced. 

It will later be found useful to have an expression for q533 in the case when A is 
independent of 6.  This has been calculated by comparing coefficients of s3E3. We find 
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q533 = A3Y3(z),  where Y~(z) is given in appendix B. We can then write, correct to third 

(22) 
order, $ = Y,(z )  + S $ ~ ( Z )  cos 5-t E ~ $ ~ ( z )  cos 2g+ s ~ $ ~ ( z )  cos 3<, 

where $1 = 2IAIY(z), +k2 = 21A12Y2(z), $3 = 21AI3Y3(z) and 5 = k[z-(c+e%,)t]. At 
this stage we can of course incorporate the parameter s with A ,  or equivalently, put 
€ =  1. 

3. Numerical examples 
Even in the few casest in which exact analytical solutions of (8) can be found 

which are continuous in a range in which the flow Richardson number varies from 
infinity to some finite value, the task of solving ( 9 )  or of performing the integrals in 
(16) is considerable, and we have therefore investigated numerically some profiles 
which not only represent those found in the natural environment but which can 
approximately be reproduced in laboratory experiments. 

We have examined the profiles 

U = U,tanhp(z-d), p,(z) = po(0) [l -Atanhp(z-d)], (23 )  

which have inflexion points at  z = d, 0 < d c h, and an interfacial thickness 2p-l. It 
should be noticed that if U, is positive there is a flow for z < d which opposes the direc- 
tion of wave propagation. We looked for solutions of (8) which correspond to the first 
wave mode for which q,(z) is zero at  z = 0, h only, using a shooting method with 200 
points in the vertical and with integrations performed using Simpson’s rule. 

Figure 1 shows the variation of c/co and c,/co with Uo/co = 6, say, where co is the value 
taken by c when U, is zero, for d = 0*25h, p h  = 20 and kh = n. The numerical solution 
gave co = 0*457(gAh)h. As expected, c is everywhere positive, lying outside the range 
of U .  However cg takes values within the range of U for approximately 

- 1.3 < 6 < - 0.6. 

The minimum gradient Richardson number of the mean flow is found at z = d and is 

Ri = qA/pU:  = 0*239 /P .  

By the Miles-Howard theorem, small disturbances will be stable provided that 
Ri > 2, or 161 < 0.978. In  the absence of boundaries this flow would be unstable for 
Ri < t, and it is probable that this condition continues to apply here (see Hazel 
1972, figure 3. Hazel’s parameter Y is roughly equivalent to pd, which is 5 in the 
present case). 

The internal gravity wave solutions continue into the regions in which unstable 
waves coexist. At small Ri, both c and cg tend to Uo, as found by Banks et al. (1976).  
Normalized profiles of N2,  U/c, ,  $1, $2, $3, q1 and q2 for various values of S are shown 
in figure 2. The normalization is such that the maximum values (except for U / c o )  
are unity. The table given in the caption to figure 2 shows how nonlinear effects increase 
in importance as 161 increases. The level of the maximum value of descends as S 
increases, whilst the maximum of ql rises in level from well below the interface at  
z = 0-25h to well above it. The change in sign of q2 between S = - 0.311 and - 0.933 
results in a change in the shape of the wave [see (12)]. At 8 = - 0.62 the shape of the 

t For example see that of Miles (1967) or Taylor (1931) and Eliassen, Heiland & Riis (1953). 
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6 

FIGURE 1. The variation of the phase speed c and group velocity c, with U,, non-dimensionalized 
with respect to the phase spead c, at U ,  = 0, for the density and velocity profiles given by (23) 
with d = 0.25h, j h  = 20, kh = n. 

isopycnal surfaces depends on depth, taking both positive and negative values, and 
both narrow and wide crests are present. These results are shown more clearly in 
figure 3(a),  where the positions of the maximum and minimum values of ql and qz 
are shown. Figure 3 ( b )  shows the same variables for a fluid with a narrower interface, 
/3h = 30. These results may be compared with those in the equivalent two-layer fluid, 
where the change in shape occurs at  6 = - 0.26 (see appendix A), and a trend in the 

~ ~~~ 

FIGURE 2. Normalized profiles of N 2 ,  U/co, @l, @2, [see (22)], qI and 712 [see (12)] for various 8 
with kh = m, /3h = 20, d = 0.25h. The maximum values of p2, $3, rl and v2 are as follows when the 
maximum value of is unity: 

6 max $LB max ZG-3 max71 max 72 

- 0.62 1.26 x lo-* 1.91 x 1 0 - 4  1.38 7-78 x 10-3 
-0.31 7.52 x 10-3 3.73 x 10-4  1.39 8-41 x 10-3 

- 0.93 2.89 x 5-32 x 10-3 3.21 3.27 x 10-l 

0.0 1.65 x 4.67 x 10-4 1.56 2.18 x 10-2 
0.31 2.94 x 8.58 x 10-4 1.74 4.76 x 
0.62 5.57 x 10-2 4.13 x 10-3 2.56 1.84 x lo-' 
0.93 1.75 4.24 16.8 35.2 
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I I 1 I I I I I 
-1.6 - 1.2 -0.8 -0.4 0 

s 
0.4 0.8 1.2 1.6 

1 I I I I I I I 
- 1.2 -0.8 -0.4 0 0.4 0.6 0.8 1.2 

6 

FIGURE 3. The variation with S of the depths z/h a t  which v1 and q n  have maximum or minimum 
values other than at z = 0 or h for waves with kh = m, d = 0.25h and (a) /3h = 20, (b)  /3h = 30. 
0, maximum of vl; x , maximum of rz; +, minimum of vz. Where the curve is dashed the 
magnitude of 7% is not the largest which exists in the flow. 

direction of this value as the interface becomes narrower may be seen in figures 3 (a)  
and (b ) .  The displacement of the maximum of rl (and from the level of the density 
inflexion for large 181, however, suggests that comparison with the two-layer model 
is bound to be of limited scope and that the qualitative similarities with surface waves 
noted in 3 1 may not be found when the density interface is of finite thickness. In  
particular a parameter which is a measure of the wave shape is max q z / c ( k  max q1)2, 
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- 40 1 
C 2 l C  @ n l d % v , ) 2  

FIGURE 4. The variation of c z / c ( k  max vl)2 with 6 for kh = T ,  

d = 0.25h and (a )  ph = 20, ( b )  ph  = 30. 

and for surface waves in water of depth h this is equal to 4(3 tanh-3kh - tanh-l kh) 
(Stokes 1947). When 181 is large, so that c is close to U,, a similarity between the 
estimates of the slope parameters of the internal waves with d = ah and of surface 
waves with kh = 4~ (S > 0) or kh = $n- (8 < 0) might be expected, since then the 
corresponding interfacial waves (Ph -too) are known to be identical in shape to the 
surface waves. In practice, however, the estimates for the waves shown in figure 3 
are much in excess of those of the corresponding surface waves. 

Figure 4 shows the variation of c2 /c (k  max v1)2 with 6, where k max rl is a measure 
of t,he slope of the isopycnal surfaces. Unlike surface waves, for which c2 > 0, c2 is 
negative for the waves considered here, although it is known that internal waves 
with c2 > 0 do occur (Thorpe 1977). 
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K 

I 

FIGURE 5 .  The wave maker. A is the almost fresh water, B the brine solution, Cis a fixed ‘aerofoil’ 
shape, spanning the tube, and D is a rubber diaphragm connecting the horizontal plate E to the 
tube walls and separating the water at  A from the brine a t  B. The plunger F is driven up and down 
via the linkage rods H and I from the rotating disk J turned by an electric motor via a hydraulic 
gearbox. As the plate E is raised water is expelled from the region A and drawn into B, causing 
a depression in the interface. A downward motion reverses the process. Repeated oscillations 
drive a train of waves. When the tube is to be tilted, the linkage pin K is drawn out, rcleasing 
the rod I and disconnecting the tube from the drive. 

4. Experiments on the wave shape 
We have made some simple laboratory experiments to test the theoretical and 

numerical results on the wave shape. 
The apparatus consists of a 4-85 m rectangular tube with Perspex side walls which is 

of height 16 cm and width 10  cm and which may be rotated about a horizontal axis. 
A wave maker similar to that used by Keulegan & Carpenter (1961), and shown in 
figure 5, is at one end of the tube. The tube is filled in an inclined position, first with 
water, in which a little salt has been dissolved to aid conductivity measurements, 
and then with a denser brine solution (sometimes coloured with potassium per- 
manganate), until the air has been completely removed and the brine-water inter- 
face is one-quarter of the way up the tube. It is then carefully rotated into a horizontal 
position, the brine spreading under the water and eventually forming a layer, 4 cm in 
depth, having a sharp interface with the water. The interface is allowed to settle and 
diffuse. Vertical profiles are made with a single-electrode conductivity probe, from 
which the density can be inferred, until the desired density profile is obtained.? 
Waves of the first internal mode are then produced by the wave maker. If the piston 
motion is too great the waves spill over the solid ‘aerofoil’ section, water being 
drawn into the region B beneath the diaphragm or brine into region A above, and 
mixing ensues. Care was taken to avoid such conditions in the experiments, As with 
most wave makers the wave form is not ideal, and in particular a small free second- 
harmonic component is generated which distorts the primary wave form. 

The waves are made visible by shadowgraphs (e.g. figures 6 and 12, plates 1, 8 and 
9) or with dyes (e.g. figures 9 and 10, plates 2-5) or by the distortions they produce 
when a set of parallel lines is viewed through the tube (e.g. figure 11, plates 6 and 7). 
Before the waves have reached the far end of the tube, the tube is tilted through a 
small angle to induce a shear flow, and then returned to the horizontal once the flow 

t The density profile is perhaps closer to a diffusion-produced error-function profile, but for 
convenience we approximate it by a hyperbolic-tangent profile in the calculations. 
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is established. Photographs are taken with a 16 mm cin6 (23 frames s-l) and a 35 mm 
‘still’ camera (taking about 2 framess-l) to record the changes in wave form. 

The flow generated in a tilted tube has been examined by Thorpe (1968b). If the 
density distribution is p(z) the flow parallel to the axis of the tube in the absence of 
waves has the form 

h 
u(z, t )  = gt sin a 

when viscosity can be neglected, where a is the angle of tilt and h is the tube depth. 
(The effect of viscosity has been considered by Thorpe (1971, appendix). The parameter 
Q which appears there in equation (A 5 )  is at the smallest 0.87 in the present experi- 
ments, and we henceforth neglect viscosity.) If p = po[l  -A tanhp(z -d)] and A + 1, 

u ( z ,  t )  = gAt sin a[tanhP(z - d) - (h - 2d)/h]. 

This flow is maintained if, at time t, the tube is brought into a horizontal position, at 
least unless Kelvin-Helmholtz instability occurs or until the arrival of surges from 
the ends of the tube. 

A study of the interaction between waves and accelerating shear flow has been 
attempted only for small amplitude waves in a two-layer fluid (Thorpe 1969). I t  was 
shown that the waves developed as parabolic cylinder functions and that, provided 
the angle of tilt was sufficiently small, a quasi-steady approximation gave a good 
description of the wave development. The analysis offinite waves will not be attempted 
here and we shall proceed on the assumption that the mean zero-order flow after the 
tube has been tilted for a time t, is given by 

U ( z )  = U,[tanh&-d)-&], (24) 

where U, = gAt,sina and we have used d = &h. The interface z = d is advected with 
speed - gU, and thus the phase and group speeds are reduced (or increased if a, and 
therefore U,, is negative). 

An interface thickness 2p-1 of 1.01 2 0-08 cm (one standard deviation is given) was 
used in these experiments, which gives a value ph = 31.7 f 2.2. When broader inter- 
faces were tried the operation of the wave maker was less than satisfactory, there 
being more mixing a t  the diffuse ‘edges’ of the interface, and it was for this reason 
that a rather narrow interface was used. The density difference A was (25.3 f 0.5) x 10-3 
and the wave frequency was 1.83 _+ 0.02rads-l, which resulted in a wavenumber 
such that kh = 3.19f0.02. These values are close to those examined numerically 
(figures 3 b,  4b). The waves before the tube was tilted (S = 0) were in each case produced 
by the same vertical motion of the piston driving the waves, and have a height- 
to-wavelength ratio of 0.034 ~f: 0.003. Their wavelength is some five times greater 
than that of the fastest growing Kelvin-Helmholtz waves in the parallel shear flow 
(Thorpe 1971), which have a length 4n//3, or a wavenumber k, such that k,h = aph, 
approximately 15.8. 

The angle of tilt of the tube was (5.092 0.03) x 10-2rad, so that S = 0.5 after 
approximately 1-06 wave periods. Figure 6 (plate 1) shows shadowgraphs of the waves 
for a variety of values of 6 approximately one period after the tube was returned to 
the horizontal position. The detailed changes in shape are obscured by the presence 
of the free second harmonic but the general trend follows the predicted pattern, 
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passing from waves with relatively narrow troughs a t  large negative S to waves with 
markedly narrower crests at positive 8, but it is not possible to determine the precise 
value of 6 at which the change occurs. Changes in shape might have been easier to 
detect if larger waves had been used but, as we shall show later (e.g. figure 13)) these 
are prone to instability at  smaller values of 161 and it is impossible with much larger 
waves to reach the negative value of S a t  which the second-harmonic contribution 
to the wave profile changes sign. 

In the first experiments which were made, the tube was not returned to the hori- 
zontal but remained tilted so that 1131 increased linearly with time. The evolution of 
the wave shape followed the trend with 6 which we have described but led eventually 
to a breakdown in the flow. That the shape of the waves is significantly affected by 
the direction of the shear is perhaps most persuasively demonstrated by figures 9 
and 10 (plates 2-5)) which show the waves before and during breaking at  positive and 
negative 6 respectively. Before discussing these experiments further we shall consider 
the conditions which lead to the breaking of internal waves. 

5. Breaking internal waves 
5.1, Particie orbits 

Internal waves will begin to break when the forward particle speed at  some point 
in the fluid exceeds the phase speed? or when Kelvin-Helmholtz instability is in- 
duced by the wave motion. We here consider the first possibility when a shear flow 
accompanies the waves. 

Since the horizontal particle speed is a$/az we may immediately proceed to search 
for the region in the flow a t  which, for a given 6,  the forward speed is largest, and then, 
by varying 6,  find the smallest value of E ,  and thus the wave slope, at which this speed 
just equals the phase speed. It is important however, particularly when the effect 
of the instability on the density distribution is considered, to know not only where 
in the flow the instability occurs, but a t  what density level it occurs, overturning in 
the region of large vertical gradient having a greater potential effect on the density 
profile and energy of the fluid than overturning a t  the edges. We shall therefore 
consider the motion of particles and develop a description of the flow in terms of the 
particle orbits. The motion of the particles is found about the mean orbital level zo, 
which therefore specifies the particle density. 

Relative to a stationary frame of reference, the motion of a particle is given by 
co-ordinates (x, x ) ,  where 

I 5 = Y~(zo)t+xo+Exl+~2x,+ ..., 
z = zo+Ezl+s22,+ ..., 

say, where xl, x2, zl, z 2 . .  . describe the displacements from a position (xo, zo)  moving 
with the basic speed U(xo). Now if A is real and independent oft, the (Eulerian) stream 

t Consider the steady motion in a frame of reference moving forward a t  the phase speed of 
the waves. In the 2, z plane lines of constant density are particle paths, the particles in general 
moving in the -x direction. If  the particle speed exceeds the phase speed at some point in the 
flow, the particle motion is reversed and the particle path, and hence the line of constant density 
passing through this point, must assume an S-shape, and hence some neighbouring fluid must be 
gravitationally unstable a t  the point. 
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function is given by (22) and the motion a t  a point is given by 

dzfdt = -a$/ax, dx/dt = a$/az. 

Substituting into (26) and collecting terms of order ewe find 

dzl/dt = klCr,(z0) sin cl, where Cl = k[xo + ( U(zo)  - C) t ] ,  

and so 

(The coefficient of cos gl is proportional to ql(z).) Also 

'ly," + $; sin Q, (using 26) and so x -L(- ) 
l - k ( U - c )  c- 

where $1, U ,  Yi etc. are evaluated at  t = zo. The horizontal particle speed axl/& is 
made up  of two contributions: the Eulerian part II.; and a part which derives from the 
vertical motion of amplitude z1 in the shear flow, the particle being carried backwards 
and forwards as it moves up and down in the relative shear flow. 

Collecting and equating terms of order €2, we find 

and so 

(there is zero mean vertical displacement a t  this order),? and 

-- 2 - 8 A Z O )  cos 2c1+ 82(ZO) 

(where e l ( z )  and e,(z) are given in appendix B) and so 

(29) 

Hence relative to U(to )  particles move forward with a speed #z(zo). This is the second- 
order mean drift, already familiar for surface waves and internal gravity waves 
(I, appendix 6; Thorpe 1977). 

At third order the finite amplitude correction to the phase speed enters the expres- 
sion (22) for $. Recommencing the expansion we find, correct to third order, that the 
forward speed of the particles is 

a x p t  = Y ~ + ~ ~ ~ ~ + E ( ~ ~ T ; + ~ ~ Y P I ( / C ~ + ~ ~ ~ ~ ) C O S ~ ~ + + ~ ~ ~ ~ O S ~ ~ ~ + E ~ ~ ~ C O S ~ ~ ~ ,  (31) 

t Coefficient of cos2{, appearing in the particle displacement (29) is not equal to T ~ ,  the 
coefficient at corresponding order in the equation for a line of constant density, since the two 
quantities are measured in different frames of reference. Equation (25) expresses the relation 
between the two frames. The difference is however negligible at order e in or the particle displace- 
ment, as noted under (27).  
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FIGURE 7. The smallest wave slope, when S is varied, at which the horizontal velocity of particles 
somewhere in the flow is just equal to the phase speed of the weves. 0, points determined taking 
into account only first-order terms; x , including second-order terms; 0, including the third- 
order terms as given by (31). The mean flow is given by (23) and kh = n, /3h = 30, d = 0-25h. 

where c2 = k[z, - c3 t ]  and c3 = c - U -I- e2(c2 - 0,) . 03(z) and 0&) are given in appen- 
dix B, and the z variables are evaluated at z = z,,. 

This forward particle speed is to be compared with the phase speed c +e2c,, which 
is correct to order e3. 

5.2. Numerical calculations 

The smallest wave slope (kmaxq,) for which the phase speeds and maximum hori- 
zontal particle speeds (maxu) are equal at orders B,  e2 and e3 have been calculated 
numerically for the tanh profiles (23)  with d = 0.25h7 ,8h = 30 and kh = 1~. As before 
200 points were examined in the vertical (2) direction but in the horizontal (or time) 
co-ordinate the slope was examined at phases of +nn, n = 0, I ,  2, ..., 8, zero phase 
corresponding to the wave crest and a phase n to the trough. The results are presented 
in figures 7 and 8. The inclusion of second-order terms reduces the wave slope at which, 
for a given value of 8, the waves become unstable to breaking, but the third-order 
terms produce only a small further reduction over most of the curve. (This result is 
not however true in general.) Figure 7 may be thought of aa a stability diagram, 
with slopes lying below the ‘critical’ slopes on the curve in a given shear flow (that is 
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FIGURE 8. (a) The mean depth z / h  of the particles and (b)  the phase of the wave when the conditions 
specified in the caption to figure 7 are satisfied. Symbols a.s in figure 7. 

at  fixed 6) being stable, whilst those with high slopes are unstable. If only first-order 
effects are considered there is a region (0 < 6 < 0.4) in which an increase in shear for 
waves with slopes lying just above the curve makes the waves stable, but for the 
second- and third-order solutions an increase in shear with a stable wave, or an 
increase in its slope, results in a trend towards an unstable situation. The presence 
of shear results in a considerable reduction in the slope at which waves break, and a 
corresponding large reduction in the wave energy. An asymmetry for positive and 
negative S is retained even a t  third order, a greater value of IV,/ being needed to 
cause breaking at 8 < 0 than for waves at the same slope (in the range 0 < 181 < 0.9) 
for S > 0, a feature which we shall find reflected in the experimental results. The 
critical wave slopes determined directly from u = a$/az show good agreement with 
those found from the particle orbits. 
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The asymmetry of the first-order curve near 6 = 0 may be explained as follows. 
When U' = 0, the waves have a forward motion under the density interface at the 
wave crest (phase zero) and a backward motion above and this flow is reversed at  the 
wave trough. The net flow is zero and so, since the greatest forward flow is below the 
interface a t  phase zero, it is therefore here that the particle speed first equals the phase 
speed as the slope is increased. A small increase in 6 reduces the forward flow below the 
interface and a wave of greater amplitude is needed to achieve conditions for wave 
breaking. The reverse is true for small negative 6. The abrupt decrease in critical slope 
of the first-order curve near IS[ = 0.7 in figure 7 is associated with the approach of 
c to U, (as in figure l ) ,  and the redistribution of $ (and therefore a$/az, the horizontal 
current) and 7 as 6 changes. The structure of $ (see figure 2) becomes complex with 
regions of alternating horizontal currents at large 161. 

At second order the abrupt changes in phase and density level a t  which the phase 
speed equals max u can be seen to be directly related but in a way which it is difficult 
to interpret physically. At third order a more coherent pattern has emerged with the 
phase changing from n to 0 near 6 = 0 and a general reduction in level (figure 8a) 
except near 6 = 0, where the physical mechanism which dominated the fist-order 
solution there continues to influence the solution. 

Figure 1 shows that c - U, decreases as 181 increases. The difference between the 
first-order phase speed c and the mean flow speed U, when the breaking condition is 
satisfied at order c3 derives almost equally from the particle motion and the reduction 
in phase speed through the terms c3c2, the latter dominating near 161 = 0.6, where 
cz/c has its largest negative values. The nonlinearity of the system thus plays an 
inherently important part in providing the conditions at which breaking occurs. 

The Richardson number in the wave when the phase speed equals max u was 
calculated. Although Ri is invariably small in some part of the flow where the density 
gradient is weak, it remains greater than 0.25 at the level of largest density gradient, 
z = 0*25h, until approximately 161 = 0.75, i.e. just before the minimum Richardson 
number in the mean flow becomes equal to 0-25 at 161 = 0.78. Infinitesimal waves of 
length equal to that of the internal wave become unstable in the shear flow when the 
Richardson number falls below 0.093, i.e. when 161 > 1.28 (see Thorpe 1971, figure 2; 
the waves correspond to a = &I). 

6. Experiments on breaking waves 
The tube was filled as before with brine and water with a = th,  A = (25.0 _+ 0.4) x 10-3 

and ph = 32.2 1.46, close to the value chosen for numerical study. The experiments 
were made with waves of the f i s t  mode having a variety of wave amplitudes, from the 
smallest which could be obtained to the largest for which no mixing was produced 
by the wave maker. The wave frequency was 1.85 _+ 0.02 rads-1 and this gave a 
measured wavenumber k such that kh = 3.246 _+ 0.103. Once the waves were estab- 
lished, the tube was tilted from the horizontal by (5-08 & 0.05) x rad and the evolu- 
tion of the waves recorded by the cameras. The value 161 = 0.5 is attained by the mean 
flow after about 1.08 wave periods. This was a shorter time than might have been 
ideal, but was a compromise to avoid significant viscous effects a t  the walls and 
interface (see $4)  and the premature interruption of the flow by the arrival of surges 
from the tube ends. 



The shape and breaking of internal gravity waves 

Wave 
slope 

I 

25 

Figures 9-12 (plates 2-9) show the appearance of the'flow when wave breaking 
occurs, In  the absence of waves Kelvin-Helmholtz instability, of course, is found 
(Thorpe 1971) and is first apparent a t  about 16) = 1 4 3 .  When large internal waves 
were present, however, it  was observed that they became asymmetrical and sharp 
at their crest,s (for positive 6, figures 9 and 1 1 )  or troughs (for negative 6, figures 10 
and 12) where the vertical density gradients were reduced, and that this part of the 
wave overtook the sloping region in front of it in a manner similar to the commence- 
ment of breaking as surface waves approach a gradually shelving beach. Instead of 
plunging rapidly however (or, for negative 6, of rising), the sheared-off fluid moved 
forward with the flow a t  its own level, forming a horizontal plate with a well-defined 
nose. This development can be seen in the figures. (The breaking at  negative 6 in 
figure 10 may be more easily seen if the figure is inverted.) The remainder of the wave 
surface for positive 6 became flattened and the wave decreased rapidly in amplitude, 
leaving the appearance of a layered structure. This, and the shock-like nose of the 
plate suggest a (catastrophic) transition from a dispersive wave structure to a non- 
linear shock or hyperbolic regime. The later development of the plate was interrupted 
by the onset of Kelvin-Helmholtz instability. For negative 6, the wave breaking was 
delayed (it occurred at  larger 161, see figure 13) and the plate motion was interrupted 
at  an earlier stage by Kelvin-Helmholtz instability. The latter wm usually modulated, 
the largest and first waves growing in the region of the plate, although the time at  
which the instability was first detectable was not significantly different from the 
value (6)  = 1.43 observed in the absence of waves. The wavelength of the growing 
billows accompanying instability was slightly modulated by the internal waves, but 
in no case was the billow wavelength equal to the wavelength of the free internal 
waves. The plates of fluid displaced from the broken internal waves were drawn and 
entrained into the spirals of t,he growing billows. 
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The early stages of the internal wave breaking, when asymmetry was apparent, 
were accompanied by the appearance of thin (2 mm vertical scale) laminae near the 
crest (or trough), possibly the result of the parametric instability described by McEwan 
& Robinson (1975). At very low wave slopes ( < 0.05) a rapid increase in the intensity 
of the thin layers seen on the shadowgraph preceded Kelvin-Helmholtz instability 
and was taken as evidence of the onset of wave breaking, but no region of positive 
vertical density gradients was apparent. 

It is in practice difficult to determine with any degree of precision the exact moment 
at  which waves begin to break. Breaking was examined both in the sequence of ‘still’ 
and in the sequence of cine photographs to determine the time of its first occurrence 
and thus a measure of U, [equation (24)l and 6, and some effort was made to reduce 
subjective influence by averaging separate estimates. The wave slope was estimated 
simply from the crest-to-trough height and wavelength measured from the films, and 
no attempt was made to correct for the third-order contribution to the amplitude 
neglected in figure 7. The results are shown in figure 13 compared with the third-order 
theoretical curve from figure 7. The points lie almost entirely in the unstable region 
above the curve as expected, and their trend roughly follows that of the curve, 
reproducing quite well the asymmetry for positive and negative S. For 6 < 0 breaking 
occurred in every case at  or near the wave trough (phase n) whilst for S > 0 the breaking 
was first observed near the wave crest (phase zero), in agreement with the third-order 
prediction of figure 8 ( b )  for the range of slopes attained in the experiment. The fluid 
involved in the breaking appears to originate from above (for 6 > 0) or below (6 < 0) 
the main density interface in accordance with figure 8 (a). The weakness of vertical 
gradients of density in these regions explains the absence of a marked tendency for the 
fluid plate to recover its own density level z,,. At the smallest slopes it was particularly 
difficult to estimate both the slope and the onset of breaking, and it is uncertain 
whether the points lying below the curve indicate any lack in the theoretical prediction. 

7. Discussion 
We have examined the effect of shear on finite amplitude internal waves, developing 

a theory which is valid for waves of small, but finite, amplitude and limited wavelength 
(these limitations are discussed in I), and deriving numerically some results in a 
particular case which it was possible to simulate approximately in an experiment. 
The observations on the shape of the waves supplement the conclusions of Long 
(1972), who examined long waves in a shear flow. A more detailed study of the way 
in which the second-harmonic contribution to the shape changes its phase in the 
accelerating flows is needed. 

Perhaps the most interesting aspect is that of wave breaking. This clearly needs 
more attention. The laboratory experiments reported here go little further than an 
examination of the onset of breaking and more are needed, particularly in fluids with 
different density and velocity distributions, to ascertain the development of the over- 
turned region, the possibility of rotor formation, and the energetics of the process. It 
is remarkable that when breaking occurs, at least at positive d (see, for example, 
figure 9), the wave amplitude is so rapidly reduced. The largest particle displacements 
become concentrated near the breaking level (see figure 2) and presumably (although 
this is not clear from the $ profiles in figure 2) the kinetic energy of the wave is also 



The shape and breaking of internal gravity wave8 27 

Wave 
slope 

0.3 T 

1 I I 1 I I I I 1 
8 6 4 2 0 2 4 6 8 

kh (Uoi,<O) kh (U,,>O) 

FIUURE 14. The variation with the wavenumber k of the smallest slope 8t which wav0 breaking 
can occur in waves in a fluid which is given by (23) with /3h = 20, d = 0.26h and hes a minimum 
Richardson number of 1.12. 

a maximum and is concentrated near this level, so that when breaking occurs the 
plate of fluid which breaks away from the wave crest carries with it much of the 
available energy contained in the wave, both potential and kinetic. HOW this is 
eventually dissipated or transferred to mean flow and mean potential energy is not 
yet clear. The effects of the Reynolds number of the flow and the Rayleigh number 
in the overturning region of the wave need consideration if the results are to be applied. 
It is however clear that the presence of shear may very significantly reduce the slope 
(and wave energy) necessary for wave breaking. The mechanism of breaking may 
provide a clue to momentum and heat transfer across a turbulent-laminar interface 
at  large Richardson numbers, as studied for example by Kantha, Phillips & Azad 
(1977). In  geophysical applications the shear might be provided by a low-frequency 
wave component, and this work may thus be regarded as part of a more general study 
of wave pair interactions. 

The effect of the wavelength may also be important in determining the slope a t  
which waves will first break. Figure 14 shows the slope, calculated a t  third order, at  
which waves of the first mode in the tanh velocity and density profiles break, when the 
minimum mean flow Richardson number is kept constant a t  1.12 and the wavelength 
is varied. The figure shows that the longer waves break at  smaller slopes than the short 
waves, even though the former are moving more rapidly and might therefore be 
expected to be less affected by the mean shear, which is kept constant. The energy 
density of the waves required to achieve breaking is however greater the longer the 
wave, but bears no simple power-law relation to the wavenumber. 

In  the laboratory experiments wave breaking precedes Kelvin-Helmholtz insta- 
bility. Whilst this is not true in general it suggests that a careful assessment needs to 
be made of the conditions under which shear-flow instability will occur, particularly 
in the ocean and elsewhere when, as is demonstrated here, the minimum Richardson 
number in the flow is not found a t  the depth where the density gradient is greatest. 
Miropolskiy & Filyushkin (1  97 1) found that the observed slopes of fairly high frequency 
internal waves in the ocean were less than those needed to produce a self-induced 
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shear instability, so that Phillips’ (1966, p. 188) model spectrum for ‘saturated’ 
waves was not appropriate. Frankignoul (1972) showed that wave breaking should 
precede Kelvin-Helmholtz instability in his simple wave shear model (results which 
are in accordance with those reported here), except for waves near the inertial 
frequency, and Garrett & Munk (1972) showed that indeed Kelvin-Helmholtz 
instability is more likely in the ocean since the energy of the waves is concentrated 
near inertial frequencies. The present results emphasize the importance of nonlinear 
effects and mean shear, particularly in the seasonal thermocline, where both effects 
may be most significant. The relative importance of wave breaking and Kelvin- 
Helmholtz instability, especially as diffusion processes, is yet uncertain. 

The effect of shear on the breaking of internal waves is exactly analogous to that of 
wind drift on surface waves studied by Phillips & Banner (1 974), resulting in an increase 
in particle speeds and a tendency to initiate breaking. The wind-driven mixing layer 
a t  the top of the ocean may be regarded as a potential site of internal wave breaking, 
particularly when the layer is accelerated by momentum transferred to it from the 
wind. The resulting breaking, being asymmetrical according to the direction of 
propagation of the waves relative to the mean shear, will modify an existing field of 
internal waves, and possibly leave a wave field with directional asymmetry. It is 
doubtful whether such effects could in practice be distinguished in periods of active 
atmospheric forcing, because of the variety of other mechanisms which might then 
modify the wave spectrum, but the physical features accompanying wave breaking 
might be observed and experiments are planned to investigate the detailed structure 
of the mixing layer and upper thermocline. 

I am grateful to Alan Hall and Mike Bray for their help in making the laboratory 
experiments. 

Appendix A. The two-layer fluid 
Consider two layers of fluid, the upper of density p,, depth h, and moving at  speed 

U,, and the lower of density p,, depth h, and moving at  speed U, in the same direction, 
the two layers being confined between horizontal boundaries at  z = - h,, h,. It may 
easily be shown by a conventional Stokes-type expansion that the displacement of the 
interface by a two-dimensional wave of wavenumber k moving with speed c parallel 
to the motion in the layers (which are supposed inviscid and irrotational) is 

plus higher-order terms in the ‘wave slope’ Ak, where 

c? P1 t 2  + 4 P2 t l  = (P2 - P1) 94 t2/k,  

and ti = tanhkhi, ci = c- V,  (i = 1,2). The dispersion relation may, for certain 
values of k, U, and U,, lead to imaginary values of c, and thus unstable, growing 
waves. 

The distortion of the wave shape 1 from sinusoidal, given by the coefficient of 
cos 2k(x - ct), may be positive (as for surface waves) or negative. If, for example (as 
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in the main text), k = n/(h1 +h2), h, = 3h2, & = - ( - l)i Uo and p2-p1 -g pl, then the 
coefficient is positive for U, = - 0 . 2 6 ~ ~  < Uo < 1 . 0 2 ~ ~  but negative for 

- 1*02c0 < uo < u,, 
where co is the speed of waves of wavenumber k in the absence of shear, i.e. when 
U, = 0. For Uo outside this range, waves of wavenumber k are unstable. 

Appendix B. Expressions for o;, &, 8,' S2, 4, S4 
If s = U - c  and r = gp;/p,(O), 

y 3  S(1V) 
9 ( 3 k ,  c)Y - - - +- r" - s's"' - 

3-2s3[  3 :( 
The functions appearing in the particle speed are 

S 
B1(Z) = - 

e2(z)  = -- 

492 2s 

4 9 2  2s 2s2 ' 
y: 11.: 11.;2 + 11.1 11.; +% 11.1 11.i 

Z?l (iv) + 221 2 11.'' + - 3 22 21." - Ell 211 11.: $; 221 4, 11.; 
+-Yo 8 2 8 "  4 2 2 x1111.;+7 

2 

211 11.; 
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@lX2l I 11.1XL I ZllXll11.i I ll.ff 

8 
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FIGURE 6. The shapc of internal wavcs at various \dues  
of S made visiblc by a shadowgraph. 
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Plate I 

(Facing p. 32) 
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FIGURES 9 (a-e). For legend see facing page. 

Plate 2 
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FIGURE 9. Tlie onset of breaking for positive 8. The waves are moving to the left. Tlie lower brine 
layer has been dyed with potassium permanganate. The photos were taken at the following times 
after the right end of the tube was tilted down: (a )  1.8s; ( b )  3 - 3 s ;  (c) 4.7 s;  (d) 5.6s;  (e) 6.6s; 
(f) 7.6 s;  (9)  8.5 s;  ( h )  9.5 s ;  (i) 10.5 s; (j) 11.4 s. The onset of Kelvin-Helmholtz instability is seen 
in (j). 
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FIGIJRES 10 (a-8). For logend see facing page. 

Plate 4 
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FIGURE 10. The onset of breaking for negative 6. The waves are moving to the left. Tho uppcr 
brine layer has been dyed with potassium permanganate. The photos were taken at the following 
times after the left end of the tube was tilted down: (a)  2.0 s ;  (0) 3.4s; (c) 4.8 S; (d )  6.2 S; ( e )  7.2 S ;  

( , f )  8.2s; (9 )  9.1 s;  (h)  10.1 s ;  ( i )  11.0s; ( j )  12.0s. Kelvin-Helmlioltz instabilityisseenin ( i)  and ( j ) .  
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FIGURES 11 (ad)’:  For legend see facing page. 
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FIGURE 11. The onset of breaking for positive 6. The waves are moving to the right, and are rnado 
visible at the left by a shadowgraph and on the right by the distortions they make in a set of 
parallel lines viewed through the tube. The photos were taken a t  the following times after the 
left end of the tube was tilted down: (a) 5.2s; ( b )  6.2s; (c )  7.1s; (d) 8 .0s ;  ( e )  9.0s; (f) 9.9s; 
(9) 10.9s; (h) 12.6s. 
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FIGURES 12 ( a d ) .  For legend see facing page. 
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FIGURE 12. The onset of breaking for ncgativo 6. The waves are moving to the right and are made 
visible by a shadowgraph. The photos were taken at the following times after tha right end of 
the tubewastilteddown: (a)  3.6s; ( b )  4.Fs; (c) 5.6s; (d) 6.5s;  ( e )  7 . 5 s ;  (f) 8.4s; (9)  9.4s; (h) 10.3s. 
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